The importance of testing your hay

Horses are naturally meant to consume a diet based on forages. Pasture and hay should usually make up the majority of the average horse’s diet. When it comes to selecting hay, many people know that good-quality hay smells good, is soft, and has more leaves than stems. But how does this visual inspection match up with the actual amount of nutrients in the hay? How much crude protein or starch is in that bale of hay? To find out, you need to take a sample of hay and do a hay analysis.

A hay analysis will reveal the specific amount of various nutrients that are found in the hay. These days, it is relatively simple to obtain a hay analysis. Using a hay corer, collect samples from 10–20 percent of the bales in a single load (Figure 2). Do not combine loads of hay, even if they are different cuttings from the same field, or the same cutting from different years. Once a sample is collected and placed in a labeled bag, the

Figure 2. Taking a hay sample. Photo credit: Danielle Smarsh.
Key nutrients and information listed on a hay analysis

Moisture and Protein

- **Moisture**: The ideal moisture for hay is around 15 percent. If the moisture is less than 10 percent, the hay will be very dry and lose a lot of nutritious leaves to shattering. The hay will also not be palatable if it is very dry. If the moisture is greater than 18 percent, there is a risk for mold forming in the hay, and if the moisture is greater than 20 percent, there is a risk for spontaneous combustion.

- **Crude Protein (CP)**: For adult horses, adequate protein should be provided by the hay if the CP value on the analysis is about 10–12 percent. If you have young horses, horses in high-intensity exercise, or broodmares that are lactating, you will want a higher CP percent in your forage. Also note that the type of hay (grass versus legume) can impact the amount of CP; typically, legumes such as alfalfa will have higher CP as compared to grass hays. But maturity of the plant when the hay was harvested will impact the CP. (This is why you are testing your hay—to know the true amount of nutrients in your hay!)

Carbohydrates

Carbohydrates fall into two categories: structural carbohydrates (fibers) and non-structural carbohydrates (sugars, starch, fructans, etc.). Both ADF and NDF give us an idea of the amount of fiber in the hay. Fiber is composed of structural carbohydrates found in plants (such as cellulose and hemicelulose). The more mature the plant, the higher amount of fiber it will contain. For horses that need to lose weight or are considered easy keepers, you may want ADF and NDF values to be on the higher end of the ideal ranges presented below. For horses that require more calories like young growing horses or horses that are working hard, you may want lower ADF and NDF values.

- **Acid detergent fiber (ADF)**: This refers to cellulose and lignin. The ideal ADF for horses ranges from 30–45 percent. If you have values greater than 45 percent, your horse probably will not like it. ADF is negatively correlated with digestibility, so the higher the number, the less the hay will be broken down inside your horse's gastrointestinal tract.

- **Neutral detergent fiber (NDF)**: This refers to cellulose, hemicellulose, and lignin. The ideal NDF ranges from 40–65 percent. If you have values greater than 65 percent, your horse probably will not eat it. NDF is negatively correlated with forage intake, so the higher the number, the less hay your horse will eat.

The hay analysis will have measures of different types of non-structural carbohydrates (NSC). This will include any of the following: starch, water soluble carbohydrates (WSC), and ethanol soluble carbohydrates (ESC). Each of these will measure slightly different combinations of carbohydrates; for example, ESC measures simple sugars, mainly monosaccharides and disaccharides (like glucose and sucrose), while WSC measures simple sugars and fructans. As the name suggests, WSC dissolve in water, so a portion of it can be leached out of hay by soaking it to reduce overall NSC.

There is not an ideal NSC number for all horses, but for horses who suffer from chronic laminitis or other metabolic disorders, it is recommended to keep NSC below 10–12 percent (on a DM basis). For horses that need to lose weight, you may also want to have lower NSC numbers. The hay analysis may not include NSC, but you can estimate it by adding together WSC + starch.

Energy

- **Digestible Energy (DE)**: This is the amount of energy that is digested and used by the horse. You can think of this as being similar to a “calorie count” of the feed. Depending on the energy needs of your horse, an ideal number will vary. The DE for most hay ranges from 0.75–1.0 Mcal/lb.
Table 1. Key terms and typical values for an equine hay analysis.

<table>
<thead>
<tr>
<th>Term</th>
<th>What it Means</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>Dry matter: the nutrients without water</td>
<td>~85%</td>
</tr>
<tr>
<td>Moisture</td>
<td>The amount of water in the hay</td>
<td>11–16%</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein: amount of protein in the hay</td>
<td>8–20%</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fiber (cellulose + lignin): a measurement of fiber</td>
<td>30–45%</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fiber (hemicellulose + cellulose + lignin): a measurement of fiber</td>
<td>40–65%</td>
</tr>
<tr>
<td>NSC</td>
<td>Non-structural carbohydrates: a measurement of simple sugars and starch. Subsets of this include WSC, ESC, and NFC.</td>
<td>5–25+%</td>
</tr>
<tr>
<td>DE</td>
<td>Digestible energy: amount of energy digested and used by the horse</td>
<td>0.75–1.0 Mcal/lb</td>
</tr>
</tbody>
</table>

What else might be listed on a hay analysis?

The list above is not everything that you might find on a hay analysis. You can find out the amounts of many vitamins and minerals in your forage, which would be useful if you are balancing your horse’s diet or if your horse is ill and you are trying to find out what the problem is. The analysis might also include values for ether extract fat, which is the amount of fat in a sample. Since forage is very low in fat, this number isn’t one we generally look closely at when analyzing hay. You might also see something called RFV, or relative feed value. This is generally used more for cattle nutrition but is an approximation of the quality of the hay. A value of 100 applies to good-quality alfalfa hay. The higher the RFV, the better quality the hay for a ruminant’s digestive system. The forage testing lab may have several “levels” of analysis to choose from, and you can read what components are included in each package and select one based on your needs.

Remember—the ideal amount of certain nutrients will vary for each horse, and is impacted by factors such as health, activity/exercise level, age, and body condition score (Table 1). A young horse starting training will need hay that is higher in CP and DE, and lower in ADF and NDF. A middle-aged horse that is ridden once a week will probably need hay lower in CP and DE, and higher ADF and NDF, as compared to that younger horse. A horse suffering from laminitis will need NSC of less than 10–12 percent, while a horse that is healthy and at an ideal body condition score does not need to have such a low percent of NSC.

Conclusions

A hay analysis provides a lot of useful information about your horse’s forage. This information is important in making sure your horse has a well-balanced diet. Remember that you should select hay based on your horses’ needs; not every horse needs premium hay with tons of energy and protein. For horses that suffer from diseases such as chronic laminitis, equine metabolic syndrome, or obesity, a hay analysis is critical to controlling the disease. If you are unsure how to balance your horse’s diet, work with an equine nutritionist.

Refer to your forage testing laboratory for directions on correctly taking a hay sample. If you do not own a hay corer, contact your local extension office; they may have one you can borrow, or can send someone to your farm to help with sample collection. A list of certified forage testing laboratories is located at the National Forage Testing Association website.

Prepared by Danielle Smarsh, equine extension specialist and assistant professor in equine science.
Penn State College of Agricultural Sciences research and extension programs are funded in part by Pennsylvania counties, the Commonwealth of Pennsylvania, and the U.S. Department of Agriculture.

Where trade names appear, no discrimination is intended, and no endorsement by the Penn State College of Agricultural Sciences is implied.

This publication is available in alternative media on request.

The University is committed to equal access to programs, facilities, admission, and employment for all persons. It is the policy of the University to maintain an environment free of harassment and free of discrimination against any person because of age, race, color, ancestry, national origin, religion, creed, service in the uniformed services (as defined in state and federal law), veteran status, sex, sexual orientation, marital or family status, pregnancy, pregnancy-related conditions, physical or mental disability, gender, perceived gender, gender identity, genetic information, or political ideas. Discriminatory conduct and harassment, as well as sexual misconduct and relationship violence, violates the dignity of individuals, impedes the realization of the University's educational mission, and will not be tolerated. Direct all inquiries regarding the nondiscrimination policy to the Affirmative Action Office, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Email: aao@psu.edu, Tel 814-863-0471.

This publication, including its text, graphics, and images (“Content”), is for educational purposes only; it is not intended to be a substitute for veterinary medical advice, diagnosis, or treatment. Always seek the advice of a licensed doctor of veterinary medicine or other licensed or certified veterinary medical professional with any questions you may have regarding a veterinary medical condition or symptom.

© The Pennsylvania State University 2023