2019
Penn State/PDMP Corn Silage
Hybrid Performance Trial
Results

Prepared by James A. Breining, Alan R. Cook, and Corey Dillon (Department of Plant Science).

Produced in cooperation with the Professional Dairy Managers of Pennsylvania (PDMP).

Visit Penn State's College of Agricultural Sciences on the Web: www.cas.psu.edu

Penn State College of Agricultural Sciences research, extension, and resident education programs are funded in part by Pennsylvania counties, the Commonwealth of Pennsylvania, and the U.S. Department of Agriculture.

This publication is available in alternative media on request.

The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the nondiscrimination policy to the Affirmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Tel 814-865-4700/V, 814-863-1150/TTY.

Where trade names appear, no discrimination is intended, and no endorsement by Penn State Cooperative Extension is implied

c The Pennsylvania State University 2015
Penn State/PDMP Corn Silage Hybrid Testing Program 2019

Early maturity (85-103 day) RM silage hybrids

Combined Hybrid performance across Bradford and Centre County

Notes: The preplant nitrogen application had diminished by grain fill time at Rock Springs and yields were a little lower than desired. There was moderate bear damage at Lance Shedden’s trial. Fertility and rainfall were adequate this year at both locations. The Cambria location was excluded from the combined data due to variability between reps.

Cooperators: Lance Shedden and PSU Agronomy Farm

Brand	Hybrid	Dry Matter %	Yield (Tons/Acre)	CP %	NDF %	Lignin %	Starch %	Ash %	Fat	NEL	12hr	30hr	120hr	240hr			
Masters Choice	MCT3891	4	41.2	18.1	6.6	32.8	2.5	44.0	2.7	0.79	30.7	57.6	64.9	67.9	11.4	29,925	88
Local Seeds	LC9888 VT2PRB	31	40.4	18.8	6.6	32.3	2.5	44.0	2.7	0.78	29.9	56.8	64.6	67.3	10.6	33,000	98
Hubner	H6124RCS	34	40.4	18.0	6.6	33.7	2.5	42.5	2.7	0.79	30.6	57.3	66.2	69.1	10.5	33,750	96
Dekalb	DCKCS-07RIB	34	40.3	18.4	7.2	31.8	2.3	44.0	2.7	0.80	30.7	58.2	67.4	70.3	9.4	33,610	96
MCT3891	34	38.0	19.6	6.2	34.5	2.6	40.5	2.7	0.79	30.8	57.7	66.3	69.2	10.3	33,000	99	
Channel	199-115TXRIB	34	39.5	21.4	6.4	33.4	2.5	42.8	2.8	0.79	31.5	58.1	67.0	69.8	10.4	33,500	96
Micogenc	TMF2Q419	34	39.7	18.6	6.6	34.9	2.6	41.0	2.9	0.79	33.5	58.5	68.3	71.2	10.0	33,560	96
Hubner	H6124RCS	34	37.8	20.6	6.9	34.8	2.6	40.6	2.9	0.78	29.5	57.0	65.7	69.3	10.8	33,167	98
Local Seeds	FS 5500X RIB	34	37.8	19.8	6.8	33.3	2.4	41.5	2.9	0.79	30.7	58.0	67.0	69.9	10.1	33,172	100
Seed Consultants, Inc.	3S978AMX	34	37.7	20.3	6.8	32.5	2.6	43.1	2.9	0.79	28.6	55.3	63.7	66.4	9.9	33,750	97
Agri-Gold	A6327STX	34	37.5	20.4	6.4	34.3	2.5	40.9	2.6	0.79	32.0	58.5	67.6	70.5	10.2	33,500	102
LG Seeds	LGS1C48VT2PRO	31	37.2	20.4	6.5	34.2	2.4	40.8	2.6	0.79	32.6	59.4	68.4	71.3	9.8	33,417	101
Pioneer	P9998AMX	27	36.5	17.5	6.7	33.4	2.7	41.8	3.0	0.79	29.7	57.3	65.9	68.7	10.5	32,917	98
Agri-Gold	A6267STX	34	35.8	21.3	6.6	35.4	2.7	38.8	3.0	0.78	29.6	57.2	65.4	68.2	11.3	33,417	102
Dekalb	DCKCS-07RIB	34	35.6	18.4	6.6	34.5	2.5	39.6	2.8	0.79	32.2	58.3	66.5	69.3	10.3	33,750	103
Micogenc	TMF01R87	34	34.9	21.2	6.3	39.6	2.7	34.6	2.8	0.77	31.6	58.1	66.7	69.6	12.1	33,667	101
Pioneer	P0242AMX	27	34.8	17.5	6.4	34.3	2.4	40.8	3.0	0.78	30.8	58.2	68.6	71.5	9.8	30,583	102
Blue River Organic Seed	48G3	Conv.	34.8	18.7	6.5	36.8	2.6	37.2	3.1	0.77	30.9	57.6	67.1	70.0	11.1	33,417	102
Seed Consultants, Inc.	SCS1018YHR	16	34.6	21.3	6.8	33.8	2.2	41.0	2.9	0.79	33.8	61.1	71.5	74.6	8.7	33,500	101
Seed Consultants, Inc.	EX-SC 105YHR	21	32.6	19.5	7.0	35.2	2.3	37.8	3.1	0.79	32.3	60.4	69.4	72.4	9.7	32,917	104

95-103 day means: 37.5 | 19.5 | 6.6 | 34.2 | 2.5 | 41.0 | 2.9 | 0.79 | 31.1 | 58.0 | 66.9 | 69.8 | 10.3 | 33,169

Overall Mean: 38.1 | 19.1 | 6.7 | 34.1 | 2.5 | 41.3 | 2.9 | 0.79 | 30.9 | 57.8 | 66.9 | 69.6 | 10.4 | 33,112

LSD(0.1): 2.5 | 2.7 | 0.6 | 2.8 | 0.3 | 3.9 | 0.3 | 0.02 | 1.5 | 1.8 | 2.1 | 2.2 | 1.4 | 1.510

CV%: 4.9 | 10.5 | 6.1 | 6.1 | 7.6 | 7.0 | 8.2 | 6.2 | 1.74 | 3.5 | 2.3 | 2.3 | 2.4 | 10.2 | 3

*See tab "Trait Key" for individual trait designation.

**Tables are sorted by dry matter. Avoid making comparisons with hybrids that differ significantly in dry matter.

***Silage yields are expressed on a 35 percent DM basis; all other parameters are expressed on a dry matter basis. CP=crude protein, NDF=neutral detergent fiber, NEL=net energy for lactation, and NDF4=neutral detergent fiber digestibility.

1 - NS = Not Significant , 2 Fat = Total Fatty Acids

Prepared by Jessica Williamson, Alan Cook, and James Breining (Department of Plant Science).
<table>
<thead>
<tr>
<th>Table Key #</th>
<th>Trait Family Product</th>
<th>Bt protein(s)</th>
<th>Marketed for control of:</th>
<th>Resistance to a Bt protein in the trait package has developed in:</th>
<th>Herbicide tolerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv.</td>
<td>Conventional</td>
<td>None</td>
<td>None</td>
<td>---</td>
<td>No</td>
</tr>
<tr>
<td>RR2</td>
<td>Roundup Ready 2</td>
<td>None</td>
<td>None</td>
<td>---</td>
<td>GT</td>
</tr>
</tbody>
</table>

Agrisure

1. Agrisure GT
 - Bt protein(s): None
 - Marketed for control of: ECB, SWCB
 - Herbicide tolerant?: No

2. Agrisure 3010 & 3010A
 - Bt protein(s): Cry1Ab
 - Marketed for control of: ECB, SWCB
 - Herbicide tolerant?: GT, LL

3. Agrisure 3000 GT, 3011A
 - Bt protein(s): Cry1Ab, mCry3A
 - Marketed for control of: ECB, SWCB, RW
 - Herbicide tolerant?: GT, LL

4. Agrisure Viptera 3110
 - Bt protein(s): Cry1Ab, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: --

5. Agrisure Viptera 3111
 - Bt protein(s): Cry1Ab, mCry3A, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC, RW
 - Herbicide tolerant?: GT, LL

6. Agrisure 3120 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F
 - Marketed for control of: BCW, ECB, FAW, SB, SWCB
 - Herbicide tolerant?: FAW, WBC

7. Agrisure 3122 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, mCry3A, Cry34/35Ab1
 - Marketed for control of: BCW, ECB, FAW, SB, SWCB, RW
 - Herbicide tolerant?: FAW, WBC, RW

8. Agrisure Viptera 3220 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: --

9. Agrisure Viptera 3330 E-Z Refuge
 - Bt protein(s): CryAb, Vip3A, Cry1A.105+CryAb2
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: --

10. Agrisure Duracade 5122 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, mCry3A, eCry3.1Ab
 - Marketed for control of: BCW, ECB, FAW, SB, SWCB, RW, FAW, WBC
 - Herbicide tolerant?: --

11. Agrisure Viptera 3111
 - Bt protein(s): Cry1Ab, Vip3A, mCry3A, eCry3.1Ab
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC, RW
 - Herbicide tolerant?: GT, LL

12. Agrisure Viptera 3110
 - Bt protein(s): Cry1Ab, Vip3A, mCry3A, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

13. Agrisure Viptera 3111
 - Bt protein(s): Cry1Ab, Vip3A, mCry3A, eCry3.1Ab
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC, RW
 - Herbicide tolerant?: GT, LL

14. Agrisure Viptera 3220 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: --

15. Agrisure Viptera 3330 E-Z Refuge
 - Bt protein(s): CryAb, Vip3A, Cry1A.105+CryAb2
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: --

16. Agrisure Duracade 5122 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

17. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A, mCry3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

18. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A, mCry3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

19. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A, mCry3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

20. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

21. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

22. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

23. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

24. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

25. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

26. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

27. Agrisure Duracade 5222 E-Z Refuge
 - Bt protein(s): Cry1Ab, Cry1F, Vip3A
 - Marketed for control of: BCW, CEW, ECB, FAW, SB, SWCB, TAW, WBC
 - Herbicide tolerant?: GT, LL

28. YieldGard CB (YGCB)
 - Bt protein(s): Cry1Ab
 - Marketed for control of: ECB SWCB
 - Herbicide tolerant?: --

29. YieldGard VT Rootworm (YGRW)
 - Bt protein(s): Cry3Bb1
 - Marketed for control of: ECB SWCB
 - Herbicide tolerant?: RW

30. YieldGard VT Triple
 - Bt protein(s): Cry1Ab, Cry3Bb1
 - Marketed for control of: ECB SWCB
 - Herbicide tolerant?: RW

31. VT Double PRO
 - Bt protein(s): Cry1A.105, Cry2Ab2
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: CEW

32. VT Triple PRO
 - Bt protein(s): Cry1A.105, Cry2Ab2, Cry3Bb1
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: CEW RW

33. Trecepta (or RIB complete)
 - Bt protein(s): Cry1A.105, Cry2Ab2, Vip3A
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: --

Others

34. Smartstax
 - Bt protein(s): Cry1A.105, Cry2Ab2, Cry1F, Cry3Bb1
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: CEW WBC RW, LL

35. Powercore (or Refuge Advanced)
 - Bt protein(s): Cry1A.105, Cry2Ab2, Cry1F
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: CEW WBC, LL

36. QROME (Q)
 - Bt protein(s): Cry1Ab, Cry1F, mCry3A, Cry34/35Ab1
 - Marketed for control of: ECB FAW SB SWCB
 - Herbicide tolerant?: FAW WBC RW, LL

Source:
Very Early (85-94 day) RM Silage Hybrids

Yield and Starch (NIR %)

How to use this chart: This chart can be used to determine yield (tons/ac) and Starch (NIR%) of corn silage hybrids. The horizontal line represents the Starch (NIR%) mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects dry matter yield in tons to Starch (NIR%). The number beside the data point can be referenced to the hybrid name located within the Legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.

1. MCT3881
2. FS 4095X RIB
3. PZ977AMXT
4. H6038RCS5
5. AV4994 AM
6. LC9278 5SX81B
7. LG44C27VT2R10
8. 192-985XR81B

Lower Yield & Higher Starch

Early (95-103 day) RM Silage Hybrids

Yield and Starch (NIR %)

How to use this chart: This chart can be used to determine yield (tons/ac) and Starch (NIR%) of corn silage hybrids. The horizontal line represents the Starch (NIR%) mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects dry matter yield in tons to Starch (NIR%). The number beside the data point can be referenced to the hybrid name located within the Legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.

1. MCT4572
2. L95088 VT2 PRIB
3. H6126RCSS
4. 6K4C45-07RIB
5. DK47-55RIB
6. TMF2G0419
7. 139-11STXR81B
8. 5990RSX
9. WH002 GENSS (RIS)
10. H6173RCSS
11. FS 5909X RIB
12. Z56976 5Z30CLZ
13. SCC 978AMX7
14. A682-075TX
15. LGS1C48VT2PRO
16. P9998AMXT
17. A52075LTRX81B
18. D4K3-27RIB
19. 78AF01887
20. PD242AMXT
21. 148G3S
22. SCC 1038YHR
23. EX-SC 105YHR

Lower Yield & Higher Starch
Very Early (85-94 day) RM Silage Hybrids

Yield and NDFD30hr(%)%

Legend
1. MCT5891
2. FS4095X RIB
3. PG977AMXT
4. H0031RRCS
5. A04894 AM
6. LC927855RIB
7. LG44C217Y2RIB
8. 192-981TXRIB

How to use this chart: This chart can be used to determine yield (tons/acre) and NDFD30(%) of corn silage hybrids. The horizontal line represents NDFD30 mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects yield to NDFD30. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.

Early (95-108 day) RM Silage Hybrids

Yield and NDFD30hr(%)%

Legend
1. MCT4072
2. LC1888 Y72PRIB
3. HS124RCSS
4. DKC65-07RIB
5. DKC47-55RIB
6. TMF20419
7. 199-131TXRIB
8. 5990RIB
9. 5X4000 GENSS (RIB)
10. H0179RCCS
11. FS 5090X RIB
12. ZS9796 3220EZ
13. 5C 978AMXT
14. A652-07STX
15. G5140RVT2PRO
16. PG999AMXT
17. A62675TXRIB
18. DKC33-27RIB
19. TMF018R7
20. PMX421AMXT
21. 48635
22. 5C 101BYHR
23. EX-5C 105YHR

How to use this chart: This chart can be used to determine yield (tons/acre) and NDFD30(%) of corn silage hybrids. The horizontal line represents NDFD30 mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects yield to NDFD30. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.
Very Early (85-94 day) RM Silage Hybrids Yield and uNDF240hr(\%DM)

- Higher Yield & Lower uNDF240
- Lower Yield & Higher uNDF240

LSD = 1.4

* How to use this chart: This chart can be used to determine yield (tons/ac) and uNDF240hr(\%DM) of corn silage hybrids. The horizontal line represents the uNDF240 mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects dry matter yield in tons to uNDF240. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.

Early (95-103 day) RM Silage Hybrids Yield and uNDF240hr(\%DM)

- Higher Yield & Lower uNDF240
- Lower Yield & Higher uNDF240

LSD = 1.43

* How to use this chart: This chart can be used to determine yield (tons/ac) and uNDF240hr(\%DM) of corn silage hybrids. The horizontal line represents the uNDF240 mean in this group of data. The vertical line represents the YIELD mean in this group of data. Each point represents a data point that reflects dry matter yield in tons to uNDF240. The number beside the data point can be referenced to the hybrid name located within the legend. The LSD lines represent the differences between hybrids that are significantly different at the 0.1 level.