Botrytis Bunch Rot: Winemaking Implications and Considerations

This article will review the implications of molds and fruit rots on wine composition and quality and discuss remedial actions in the winery.
Botrytis Bunch Rot: Winemaking Implications and Considerations - Articles

Updated: May 29, 2018

Botrytis Bunch Rot: Winemaking Implications and Considerations

Botrytis bunch rot. Photo by W.J. Moller

The most common bunch rot pathogen of mature berries is Botrytis cinerea. How severe can Botrytis bunch rot be before wine quality is impacted? This will depend on the type of rot as well as winemaking techniques. However, even low levels of infection have been shown to impact wine quality negatively. Red wine quality was shown to be affected by as low as a 5% infection rate of B. cinerea. Extended skin contact in red winemaking can increase the effect of bunch rots on the finished wine. While B. cinerea can be linked with sour rot, it is more commonly associated with other fungi including Aspergillus spp. Sour rot is caused by yeast, acetic acid, and other bacterial growth. When acetic acid bacteria, yeast, and filamentous fungi are present together, high levels of acetic acid can result. Berries infected with sour rot have a distinct vinegar smell that may be combined with the presence of ethyl acetate. Ethyl acetate is an ester described as smelling like nail polish remover.

Laccases are enzymes produced by fungi. They break down anthocyanins and proanthocyanidins which are important phenolic compounds that contribute to palate structure and wine color. In white wines, some aromatic compounds can be oxidized resulting in the production of earthy aromas.

The largest change in must chemistry as a result of Botrytis growth is seen in amounts of sugars and organic acids. Up to 70 to 90% of tartaric and 50-70% of malic acid can be metabolized by the mold. Resulting changes in the tartaric:malic ratio cause titratable acidity to decrease and pH to increase.

There may also be clarification issues as a result of infection. The fungi produce polysaccharides including β1-3 and β1-6 glucans as well as pectins as a result of the production of enzymes capable of degrading the cell wall. In the presence of alcohol, pectins and glucans aggregate causing filtration difficulties. To mitigate this issue, pectinolytic and glucanase enzymes can be used. When adding enzymes allow at least six hours prior to bentonite additions.

Botrytis cinerea strains differ in the amount of laccase produced. This enzyme can lead to oxidation of aroma/flavor compounds and browning reactions. It can be resistant to sulfur dioxide and not easily removed with fining agents. Bentonite may remove enough laccase to minimize oxidative problems. For varieties where the potential for oxidation is increased, ascorbic acid additions can be added to juice. Since Botrytis uses ammonia nitrogen, there is less available for yeast metabolism. Vitamins B1 and B6 are also depleted. Therefore supplementation with nitrogen and a complex nutrient is required. Yeast assimilable nitrogen (YAN) should be measured and adjusted accordingly to avoid stuck fermentations and production of hydrogen sulfide. Also consider inoculating with low nitrogen-dependent yeast and use more than the standard amount of 2 lbs. /1000 gallons.

Wine off-flavors and aromas result from a number of compounds when made from grapes with Botrytis (and other bunch rot organisms). Descriptors include mushroom and earthy odors from compounds such as 1-octen-3-one, 2-heptanol and geosmin. Since fruitiness can be decreased, the use of mutés (unfermented juice) from clean fruit can be added to the base wine to improve aroma. Botrytis also secretes esterases that may hydrolyze fermentation esters. Monoterpenes found in varieties such as Muscat, Riesling, and Gewürztraminer can also be diminished.

When Botrytis infection is present, consider the following processing practices in addition to those mentioned above.

  • Remove as much rot as possible in the field and sort fruit once it arrives at the winery. Using sorting tables is a great way to improve overall wine quality.
  • Whole-cluster press whites, using very light pressure, and discard the initial juice.
  • Harvest fruit cool and process quickly. Sulfur dioxide can be added to harvest bins to inhibit acetic acid bacteria.
  • Enological tannin additions will bind rot-produced enzymes. They can also bind with protein and decrease the bentonite needed to achieve protein stability. Note: Remember to not add tannins and commercial enzymes at the same time since tannins are known enzyme inhibitors. After an enzyme addition allow six to eight hours before adding tannins.
  • Minimize oxygen uptake since laccase activity is inhibited in the absence of oxygen. An inert gas can be used at press, during transfers, and to gas headspace.
  • Use a commercial yeast strain that will initiate a rapid fermentation. The resulting carbon dioxide will help to protect against oxidation.
  • Once fermentation is complete, rack right away. Both Botrytis and laccase settle in the lees.
  • Phenolic compounds are the main substrate for fungal enzyme activity. Removal of undesirable phenolic compounds can be achieved using protein fining agents (ex: gelatin, casein, isinglass). The synthetic polymer PVPP can also be used in juice or wine to remove oxidized phenolic compounds.
  • Only cold soak clean fruit. Avoid cold soak and extended maceration on Botrytis infected fruit as this may encourage fungal and bacterial growth. As always, it is best to avoid rot-compromised fruit, however, using these practical winemaking tips should help to minimize negative impacts on wine production and quality.

References

DeMarsay, A. Managing Summer Bunch Rots on Wine Grapes, Maryland Cooperative Extension. Accessed 7 May 2018.

Ribereau-Gayon, P. 1988. Botrytis: Advantages and Disadvantages for Producing Quality Wines. Proceedings of the Second International Cool Climate Viticulture and Oenology Symposium. Auckland, New Zealand, pp. 319-323.

Steel, C., J. Blackman, and L. Schmidtke. 2013. Grapevine Bunch Rots: Impacts on Wine Composition, Quality, and Potential Procedures for the Removal of Wine Faults. J. Agric. Food Chem. 61: 5189-5206.

Zoecklein, B. 2014. Fruit Rot in the Mid-Atlantic Region, On-line Winemaking Certificate Program, Wine Enology Grape Chemistry Group, Virginia Tech. Accessed 16 April 2018.

Zoecklein, B. 2014. Grape Maturity, On-line Winemaking Certificate Program, Wine Enology Grape Chemistry Group, Virginia Tech. Accessed 16 April 2018.

Authors

Enology Microbiology Wine Analysis Wine Production Winery Sanitation

More by Molly Kelly