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Abstract.—Fishery-independent (FI) surveys provide critical information used for the sustainable

management and conservation of fish populations. Because fisheries management often requires the effects

of management actions to be evaluated and detected within a relatively short time frame, it is important that

research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal

trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to

2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating

spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance

estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample

size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3)

discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries

management. This case study illustrated that the statistical power to detect temporal trends was low over

relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For

example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more

than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than

0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that

trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-

analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach

can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences

about trends in fish stocks.

Fishery-independent (FI) surveys help fulfill a

variety of fisheries management objectives, including

assessing stock status and trends, setting annual harvest

levels, and evaluating the effects of natural and

anthropogenic stressors on the spatiotemporal dynam-

ics of populations (Quinn and Deriso 1999; Sitar et al.

1999; Allen et al. 2007). Although data derived from FI

surveys are used to fulfill many objectives, one of the

most common uses of these data is to infer changes in

indices of relative abundance over time (Pennington

and Strømme 1998; Stobutzki et al. 2006; Corradin et

al. 2008). Knowledge of rates of population decline or

increase is critical to maintain sustainable management

of exploited species and to assess recovery efforts for

species of high conservation priority (Zwieten et al.

2002; Maxwell and Jennings 2005). In addition,

fisheries management often requires the effects of

management actions to be evaluated and detected

within a relatively short time frame, such as 5 years

(Zwieten et al. 2002). Therefore, quantifying the

magnitude of change in the relative abundance of a

population that can be detected from FI surveys has

important implications for the time scale needed for

managers to evaluate management actions, detect

changes attributable to sources other than management

(e.g., invasive species), and—to avoid undesirable

changes in abundance—respond and take appropriate

action.

Much research has been conducted on various

aspects of sampling methodology and on the efficiency

of different gear types used during FI surveys. For

example, the design of statistically valid FI surveys for

monitoring fish populations has been acknowledged as

essential to ensure that inferences regarding status and

trends can be generalized to a population of interest
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(Ault et al. 1999; Hayes et al. 2003; Smith and

Tremblay 2003). This has led to a switch from non-

probability-based sampling to an increased use of

probability-based sampling designs (Olsen et al. 1999).

In addition, important research has compared the

efficiency of different gear types and evaluates factors

affecting the efficiency and representativeness of

different gear types used during FI surveys (McInerny

and Cross 2006; Niles and Hartman 2007; Yule et al.

2008). However, given the fiscal resources devoted to

performing FI surveys, relatively little research has

been focused on detecting temporal trends (especially

for freshwater systems; see Maxwell and Jennings

2005 and Blanchard et al. 2008 for marine examples);

in particular, little has been done with quantifying

sources of variability that influence the power to detect

changes over time in indices such as catch per effort

(CPE). The inherent variability of fish populations is

what leads to questions related to how to best sample

(e.g., allocate resources) to maximize trend detection

capabilities. For example, common questions posed by

fishery managers include ‘‘given the current number of

sites we sample each year, what magnitude of decline

in CPE can we detect within 5 or 10 years?’’, or ‘‘how

many sites do we need to sample each year to detect a

prespecified decline in CPE within 10 years?’’ The

answers to these and other monitoring questions are

largely influenced not only by the total variability in

fish CPE, but also by how it is partitioned among

various spatial and temporal components (see Meth-

ods).

As in many freshwater systems, FI surveys are used

in the Laurentian Great Lakes by state, provincial,

tribal, and federal fish and wildlife agencies to assess

the status and trends of a variety of fish species (Sitar et

al. 1999; Stapanian et al. 2007; Pothoven and

Madenjian 2008; Ohio Department of Natural Re-

sources [ODNR] 2008). The data from these surveys

represent an important source of information for

managing both exploited and unexploited fish species

in a socially and ecologically complex ecosystem.

Specifically, FI surveys often are used to provide time

series of relative abundance, size and age composition

of the population, and indices of fish condition and sex

ratios. For this case study, we focused on FI survey

data for CPE of walleye Sander vitreus in the Ohio

waters of Lake Erie. Walleyes, an ecologically

important species native to the Great Lakes, support

important recreational and commercial fisheries in the

Great Lakes, particularly Lake Erie. For example, the

walleye fishery in the Ohio waters of Lake Erie

attracted over 1 million trips by sport anglers in 2007,

most of the private boat effort (63%) targeting walleyes

(ODNR 2008).

Because walleyes in Lake Erie are important

ecologically and economically, obtaining FI survey

data for input into population models to assist in the

development of harvest programs and to track trends in

abundance over time is a critical component of

effective management. For instance, the Walleye

Management Plan developed for Lake Erie establishes

fishery sustainability and quality objectives for walleye

management (Locke et al. 2005). Included in this plan

is an exploitation policy designed to help meet specific

management objectives, and the effects of this policy

are required to be evaluated on a 5-year basis.

Simulation modeling is one method currently used to

evaluate harvest policies; however, because of the

relatively long time scale the simulation models

operates over and the high temporal variability in

walleye abundance over shorter time scales, both these

sources of information (long-term simulations and

short-term monitoring) should be considered when

determining the success of the harvest policy in

meeting objectives.

The goal of this study was to use FI surveys for

walleyes sampled from the Ohio waters of Lake Erie as

a case study to illustrate the utility of quantifying

sources of variability for evaluating capabilities of FI

surveys to detect temporal trends under different

sampling scenarios and to establish realistic expecta-

tions for what can be detected over relatively short but

management-relevant time periods (e.g., 5–10 years).

Although Lake Erie walleyes are used as a case study,

the methods discussed can be applied to different

species and systems. The specific objectives of this

study were (1) to quantify the spatial and temporal

sources of variation in CPE from annual gill-net

surveys of walleyes conducted by ODNR in Ohio

waters of Lake Erie; (2) using the estimates of spatial

and temporal variability, to examine the statistical

power for detecting trends with regard to (a) the

number of net sets, (b) the magnitude of the trends, (c)

the number of years over which FI surveys were

conducted (i.e., the sampling duration), (d) the

assumptions made about what data should be included

in the analysis (specifically, how do results change if

years before zebra mussels invasion, which were

characterized by lower water clarity compared with

that in postinvasion years, are excluded from the

analysis); (3) to discuss the results in terms of setting

realistic expectations for FI surveys; and to provide

recommendations for future analyses to help evaluate

and inform the design of FI surveys.

Methods

Annual gill-net surveys.—Experimental gill-net sur-

veys were conducted in the Ohio waters of Lake Erie
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by ODNR, Division of Wildlife, to ascertain the

relative abundance of walleyes. The gill-net survey

was initiated in 1978, and although the survey has

changed through the years in terms of effort expended

(i.e., the number of nets set), the same sampling gear

has been utilized throughout. Gill nets used by the

ODNR are experimental mesh multifilament gill nets;

each net consists of a gang of 13 randomly ordered

panels (each panel is 1.8 m tall 3 30.5 m wide) with

mesh sizes ranging between 51- and 127-mm stretched

mesh in 6-mm increments. Annually, the gill-net

survey is conducted during the fall (late September–

early November) with ‘‘canned’’ gill-net sets (i.e., the

nets are suspended from the surface to a depth of 1.8 m

with individual floats at each panel). Lake Erie is

divided into five management units (MUs); gill-net

surveys used for this study were conducted in Ohio

waters of MUs 1–3 (Figure 1). Total counts of age-2

and older walleyes were obtained from gill-net catches

as an index of relative abundance. Younger ages of

walleyes were not included in this analysis because

these age-classes of walleyes are not fully recruited to

the ODNR gill nets. Thus, CPE of walleyes in ODNR

gill nets was defined as the total number of age-2 and

older walleyes collected in each individual net set.

Variance components.—It is not just the total

variance that influences the statistical power to detect

temporal trends; rather, how the total variance is

partitioned among spatial and temporal sources has a

critical influence on power (Urquhart et al. 1998).

Therefore, quantifying multiple sources of spatial and

temporal variation has been advocated as an approach

to address the issue of variability in ecological data

when evaluating temporal trends and monitoring

aquatic ecosystems (Urquhart et al. 1998; Larsen et

al. 2001; Kincaid et al. 2004). This approach, known as

a variance components framework, has been applied

successfully to indicators of water quality (Urquhart et

al. 1998), fish habitat indicators (Larsen et al. 2004),

and more recently to fish mean size at age (Wagner et

al. 2007). Under this variance components framework,

total variance is partitioned into several components,

including (1) site-to-site (spatial) variation; (2) coherent

(year-to-year) variation affecting all sites in a similar

manner; (3) ephemeral temporal variation (i.e., site 3

year interaction) corresponding to independent yearly

variation at each site; (4) trend variation, in which each

FIGURE 1.—Map of Lake Erie showing fishery management units. The outlined areas represent the five management units

(MUs) for walleyes recognized by the Lake Erie Committee; the shaded areas represent the extent of Ohio waters and the MUs

used in the analysis.
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site is allowed to have its own trend; and (5) residual

variation (VanLeeuwen et al. 1996; Larsen et al. 2001;

Kincaid et al. 2004). More complex error structures

may also need to be considered beyond that previously

described. For example, the temporal analysis of

survey catches can potentially suffer from a lack of

independence across annual observations because

individual cohorts are captured during multiple years.

The progression of a strong cohort over time would

probably result in more similar catches during those

years. Such may be the case with percids, where

variation in abundances over time is strongly influ-

enced by year-class strength. Thus, investigations into

temporal autocorrelation in year effects are also

warranted. Once variance components have been

estimated, they can be used to evaluate the statistical

power of different fishery indicators, such as CPE.

Here, we apply and demonstrate the utility of this

approach for examining sampling questions related to

FI surveys.

ODNR biologists had concerns about the potential

effects of changes in water clarity over time on

catchability with gill nets. For example, fall Secchi

measurements in the late 1980s were steady at

approximately 0.75 m and then increased substantially

in the mid-1990s to near 1.6 m. This increase in water

clarity coincided with colonization by dreissenid

mussels and led to concerns that the spatial and

temporal dynamics of walleyes in the 1970s and 1980s

were not representative of current walleye dynamics

(ODNR unpublished data). To address this concern, we

performed two separate analyses on the Lake Erie

walleye FI survey data. First, we analyzed the entire

time series extending from 1978 to 2006 and included

data sampled from MUs 1–3 (hereafter referred to as

the ‘‘full analysis’’). We performed this analysis to

make use of the entire ensemble of data when

quantifying spatial and temporal patterns in CPE. In a

second analysis, to address the concern regarding a

change in gill net catchability, we restricted the

analysis to a subset of data ranging from 1996 to

2006 (hereafter referred to as the ‘‘restricted analysis’’).

The ODNR biologists also felt that the most appropri-

ate data to include in the restricted analysis were those

currently used in stock assessment models. Thus, the

restricted analysis was also restricted to data collected

only from MUs 1 and 2. Although using a cutoff date

of 1996 and restricting the analysis to MUs 1 and 2 is

somewhat arbitrary, this represents one of many

possible choices managers can make with respect to

which data are most appropriate to incorporate in such

an analysis. Thus, we use this as an opportunity to

evaluate the sensitivity of the results to assumptions

made about what data are most appropriate for

characterizing the spatial and temporal dynamics of

walleye populations in Ohio waters of Lake Erie.

Statistical model.—For both the full and the

restricted analyses separately, we used a hierarchical

model to assess the presence of any temporal trend in

walleye CPE and to obtain estimates of variance

components for use in simulation modeling. Although

this model does provide an estimate of average

temporal trend, the variance estimates are of primary

interest for evaluation procedures outlined below.

The mixed model used for the analyses was

Yijk ¼ lþ ai þ yðkþ tiÞ þ bj þ cij þ eijk ð1Þ

Where Yijk is the log
e
(CPE) for sample k at site i in year

j, and l and k are the fixed intercept and slope,

respectively. The random effect, a
i
, represents site-to-

site variability, which is independent and indentically

distributed (iid) as N(0, r
a
2); b

j
,is a random effect for

the jth year (coherent temporal variability) that is iid as

N(0, r
b

2); t
i
is a random effect for the trend (i.e., slope)

for site i that is iid as N(0, r
t
2); c

ij
is the site 3 year

interaction (ephemeral temporal variability), which is

iid as N(0, r
c
2); and e

ijk
is the unexplained error

(residual error), which is iid as N(0, r
e
2). The year

covariate (y) is the jth year minus the mean year used in

the analysis. Thus, the parameters estimated by using

equation (1) are a fixed slope and intercept and the five

variances estimates (r̂n) associated with the random

effects. This standardization of year was performed to

provide numerical stability. To investigate whether the

sequential relative abundance values were correlated

over time, we also modeled the coherent year effect by

using a first-order autoregressive model. Year effects

were modeled as

stþ1 ¼ qst þ et; et ; Nð0;r2
eÞ; ð2Þ

where s is the year effect, q is the first-order

autoregressive parameter, and e is a random error

term. We used a likelihood ratio test to determine

whether the more complicated error structure was

warranted. Variance components were estimated using

restricted maximum likelihood and P-values with a

likelihood ratio test (Self and Liang 1987; Littell et al.

1996). We considered all analyses significant at P ,

0.05. All means are shown 6 1 standard error (SE).

Simulations.—We investigated the extent to which

the following factors affected the ability to detect a

temporal trend in walleye CPE: (1) the data set used in

the analysis (full versus restricted), (2) changes in the

number of sites sampled (i.e., the number of net sets,

sampling 10, 25, 50, or 100 fixed sites each year), (3)

trend magnitude (k decreases ranging from 3% to 20%
per year), and (4) sample duration (range, 5 to 25
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years). In this study we limited the analysis to the

detection of linear trends; however, if a monotonic

increase or decrease in CPE occurs, then a linear trend

will be present (Urquhart and Kincaid 1999). We used

a simulation approach to examine the statistical power

to detect temporal trends, using the variance compo-

nents estimated from equation (1), following methods

outlined in Wagner et al. (2007). For each simulation,

1,000 data sets were generated containing CPE data for

a population of sites. We ran the simulations for two

population sizes from which potential sites were

sampled. For the full analysis the population of sites

was set at 305, corresponding to the total number of

sites identified by the ODNR that could be potentially

sampled (102 sites in MU 1, 130 sites in MU 2, and 73

sites in MU 3). For the restricted analysis, the

population of sites was set at 232, corresponding to

the total number of sites that could potentially be

sampled in MU 1 and 2. Because the current protocol

for annual gill-net surveys is to set one net per sample

site, we considered only sampling schemes with one

sample (net set) per site each year (no resampling).

After a time series of CPE was generated for each

site over a 25-year time period, we incorporated into

the data set a negative trend of known magnitude (k).

From these 1,000 data sets, a user-specified number of

sites (10, 25, 50, or 100) were then randomly sampled

from the population of sites. Selected sites were

randomly sampled at the start of each simulation;

those sites were then considered fixed and sampled

throughout the 25-year sampling period. All sites were

available for sampling at the start of each simulation.

Data were analyzed for different sampling durations

from 5 up to 25 years and analyzed for the presence of

a trend. A model similar to equation (1) was used to

test the null hypothesis that k̂¼ 0 for each data set and

the test statistic was calculated and compared against a

critical value (a ¼ 0.05). We chose a ¼ 0.05 for our

simulations; however, the magnitude of a is a choice

for decision makers to make in consideration for the

costs associated with type I (i.e., concluding a trend is

present when in fact one does not exist) or type II errors

(i.e., concluding a trend is absent when in fact a trend

does exist). The decision as to what is an acceptable

error rate will vary depending on the species of interest

and management goals. The model differed from

equation (1) by excluding the random effect for the

site 3 year interaction because sites were not sampled

multiple times per year in the simulations. Because the

data generated depict a situation in which we know the

null hypothesis was false (H
0
: k̂ ¼ 0), power was

estimated as the percentage of trials (out of 1,000) that

rejected the null hypothesis (Wagner et al. 2007). All

simulations were performed by using the Statistical

Analysis System (SAS Institute 2004).

Results
Annual Gill-Net Surveys

For the full analysis, the number of gill-net sets per

year ranged from 4 during the years 1978–1983 to 51

in 2006, and the average annual CPE ranged from 43

6 10.3 in 1991 to 282 6 79.8 in 1981. For the

restricted time series (1996–2006), the number of gill-

net sets ranged from 9 in 2001 to 51 in 2006, with

average CPE ranging from 44 6 13.0 in 2003 to 128

6 29.2 in 2002 (Figure 2).

Trends in Observed Walleye CPE

For both the full and restricted analysis, modeling

the coherent year effect as a first-order autoregressive

process did not improve the fit of the model (for both

analyses, P . 0.20). Thus, the model specified in

equation (1) was deemed most parsimonious and used

to examine temporal trends and estimate variance

components. For the years and sites included in the full

analysis, walleye CPE in ODNR gill nets exhibited a

significant negative temporal trend (fixed slope

estimate k̂ ¼�0.03 6 0.02; P ¼ 0.02) from 1978 to

2006, with an average annual percent decrease of 3.4%
(Table 1). However, when the analysis was restricted to

the years 1996–2006 and MUs 1 and 2, CPE did not

exhibit a significant temporal trend (k̂ ¼ 0.00 6 0.04,

P ¼ 0.91; Table 2).

Variance Components

For the full analysis, all variance components were

significantly different from zero, except trend variation,

which was estimated to be near zero. Site-to-site

variation accounted for 26% of the total variation,

whereas coherent temporal and ephemeral temporal

variation contributed 15% and 43%, respectively. The

significance of the coherent temporal variation can be

interpreted as, in a given year, all sites tended to either

have higher or lower than average CPE. The significant

ephemeral temporal variation can be interpreted as

follows: in addition to coherent variation, where all

sites respond similarly in a given year, all sites also

deviated independently from one another (e.g., in a

given year, one site may have higher than average

CPE, whereas another may have lower than average

CPE). The unexplained error (residual variation) was

16% of the total variation (Figure 3A).

For the restricted analysis, all variance components

except ephemeral temporal variation (P ¼ 0.18) were

significantly different from zero. However, the variance

estimate for ephemeral temporal variation made up 32%
of the total estimated variation (Figure 3B). Because it is
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unlikely that sample sites did not exhibit independent

yearly variation each year in CPE, and because the

nonsignificance of the estimate probably resulted from

the limited sample size used in this analysis, we included

the ephemeral temporal variance estimate in the power

analyses. Site-to-site variation accounted for 13% of the

total variation, and coherent temporal variation 10%.

Trend variation was 0.9% and unexplained error

(residual variation) was 43% of the total variation.

Simulations

Power curves of walleye CPE for both analyses (full

and restricted) demonstrated expected patterns with

respect to changes in sampling duration, the number of

sites sampled each year, and trend magnitude, power

increasing as sampling duration, the number of sites

sampled each year, and trend magnitude increased

(Figures 4, 5). However, how rapidly power increased

was dependent on the data set analyzed (the full or

restricted analysis). Few consistent patterns were

evident when data sets were compared, with the

patterns depending on the sampling scenario consid-

ered. However, the restricted analysis had greater

power to detect a trend of any magnitude considered,

regardless of sampling duration, when 50 or 100 sites

were sampled each year. In addition, in most cases the

observed increase in power from increasing the number

of sites sampled each year from 10 to 20, 50, and 100

was greater for the restricted analysis. This pattern was

most noticeable for smaller trend magnitudes scenarios

(i.e., 3% and 5% trend) after 10–15 years of sampling

(Figures 4, 5). For example, for a trend magnitude of

5% decline per year, increasing the number of sites

sampled each year from 10 to 100 for the full analysis

resulted in an increase in power of 0.24 at year 15

(Figure 4B). For the same scenario the restricted

TABLE 1.—Parameter estimates, standard errors, and P-

values for the fixed intercept and slope and the random effects

of site, coherent temporal, slope variation, ephemeral

temporal, and residual error for gill-net catch per unit effort

for walleyes in Lake Erie based on a time series from 1978 to

2006. Estimates are for the ‘full’ analysis; see equation 1 for

explanation of model parameters.

Parameter Estimate SE P-value

Fixed effects
Intercept ðl̂Þ 4.02 0.14 ,0.001
Slope ðk̂Þ �0.03 0.02 0.022

Random effects
Site ðr̂aÞ 0.44 0.13 ,0.001
Coherent temporal ðr̂bÞ 0.25 0.09 0.004
Slope ðr̂tÞ 0.0 a a

Ephemeral temporal ðr̂cÞ 0.74 0.11 ,0.001
Residual ðr̂eÞ 0.28 0.07 ,0.001

a Not estimable.

FIGURE 2.—Plot of annual site-specific catches for age-2 and older walleyes (circles; CPE) and total number of net sets

(squares) from annual gill-net surveys on Lake Erie from 1978 to 2006. The vertical solid line indicates the cutoff date (1996) for

the full and restricted analyses.
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analysis resulted in an increase in power of 0.66 at year

15 (Figure 5B).

The power to detect temporal trends of a 3–5%
annual decline in CPE over a relatively short sampling

duration (5–10 years) remained low regardless of the

number of sites sampled each year or which data set

was used for the analysis. A trend in CPE could be

detected within 5–10 years only for relatively large

trend magnitudes. For example, in the full analysis, if

10 sites were sampled each year for 10 years, the power

to detect a temporal trend did not approach 0.8 until the

magnitude of the decline was 20% per year (power ¼
0.78). However, if 50 sites were sampled each year, a

10% annual decline could be detected with greater than

0.80 power in 15 years; a 5% annual decline, on the

other hand, would still not be detected with power

greater than 0.8 for approximately 22 years (Figure 4).

Similarly, the power of the restricted analysis to detect

temporal trends remained low for a trend magnitude of

3%, regardless of the sample duration and the number

of sites sampled. For instance, when 100 sites were

sampled, the power to detect a temporal tend after 25

years of sampling was only 0.62. Sampling 100 sites

and assuming a 5% annual decline, the power to detect

trends did not exceed 0.80 until 17 years of sampling

(Figure 5). However, power was relatively high for

detecting trends of large magnitude (e.g., 20% decline

per year) for the restricted analysis. For instance, if 100

sites were sampled each year, power exceeded 0.80

after 10 and 6 years for trend magnitudes of 10% and

20%, respectively, for the restricted analysis.

Discussion

The percent declines we considered for this analysis

are within the range of values observed in walleyes and

other important fisheries, including marine and fresh-

water fisheries (Wilberg et al. 2005; Campana et al.

2006; Irwin et al. 2008). However, given the sampling

scenarios we investigated, the statistical power to

detect temporal trends in walleye CPE was low over

short to moderate sampling durations (e.g., 5–10 years)

unless the magnitude of annual change in CPE was

relatively large (e.g., 10–20% per year decline).

Although these analyses demonstrated that increasing

the number of sites sampled each year increased power,

even under a scenario where 100 sites were sampled

each year, the power to detect small changes (e.g., 3%

per year decline) remained low over relatively long

sampling durations. Zwieten et al. (2002) also

concluded that the ability to detect trends in catch

rates was low over relatively short time periods, finding

that it would take 30 years of observations to detect a

1.6% per year decrease in total catch rates in an

industrial pelagic purse-seine fishery in northern Lake

Tanganyika with 90% power. When assessing the

power of the English bottom trawl survey, Maxwell

and Jennings (2005) found that even an annual

decrease of 50% in adult abundance for the less

abundant species caught in the surveys, such as the

thornback ray Raja clavata, spurdog Squalus acan-

thias, and spotted ray R. montagui, would have low

power to be detected after 5 years of sampling.

However, for abundant species, such as dab Limanda

TABLE 2.—Parameter estimates, standard errors, and P-

values for the fixed intercept and slope and the random effects

of site, coherent temporal, slope variation, ephemeral

temporal, and residual error for gill-net catch per unit effort

for walleyes in Lake Erie based on management units 1 and 2

and data from 1996 to 2006. Estimates are for the ‘restricted’

analysis; see equation 1 for explanation of model parameters.

Parameter Estimate SE P-value

Fixed effects
Intercept ðl̂Þ 4.15 0.13 ,0.001
Slope ðk̂Þ 0.00 0.04 0.910

Random effects
Site ðr̂aÞ 0.12 0.06 0.002
Coherent temporal ðr̂bÞ 0.09 0.06 0.002
Slope ðr̂tÞ 0.01 0.01 0.003
Ephemeral temporal ðr̂cÞ 0.28 0.26 0.180
Residual ðr̂eÞ 0.38 0.25 ,0.001

FIGURE 3.—Estimated percent of total variation for (A) the

full analysis and (B) the restricted analysis attributed to site,

coherent temporal, ephemeral temporal, trend (random slope),

and residual variance. Estimates are from a mixed model for

log
e
(total walleye catch) versus time. The time series ranged

from 1978 to 2006 and from 1996 to 2006 for the full and

restricted analyses, respectively.
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limanda and long rough dab Hippoglossoides plates-
soides, the power to detect a decline of more than 20%
after 5 years was relatively high (Maxwell and

Jennings 2005). Taken together with our analysis,

these results suggest that FI surveys often have

relatively low power to detect small temporal changes

in CPE over relatively short sampling durations. This is

important to quantify because low to modest changes

in CPE or other indices may not be detectable over

management-relevant time scales. However, the ability

of a survey to detect trends probably will also vary

among species and systems according to species-

specific spatial and temporal dynamics; thus, broadly

generalizing the results of our analysis to all FI surveys

is not prudent.

The low power to detect certain trends as indicated

by this case study does not imply reduced importance

of these surveys for fulfilling many management

objectives, including collecting information for popu-

lation models. In addition, because the power to detect

trends in CPE not only depends on the structure of

variation but also is a function of the survey design

(Urquhart et al. 1998; Larsen et al. 2004), FI surveys

must be evaluated with regard to components of

variation in conjunction with survey design in an effort

to maximize capabilities for trend detection. The

statistical power of a test also depends on the type I

and type II error rates deemed acceptable by managers.

Because the costs associated with a type I error are

often lower than those for a type II error, managers

may decide to retain a higher type I error rate (e.g., a¼
0.10; Taylor and Gerrodette 1993; Strayer 1999;

Maxwell and Jennings 2005). Examining the effects

of changing the type I error rate is easily incorporated

into the variance component approach.

We cannot determine whether the observed changes

in variance structures between the full and restricted

data sets are related to indirect effects of zebra mussels

on sampling efficiency (i.e., water clarity effects) or to

potential changes in population dynamics. However,

the decision regarding what data to include in the

analyses for trend detection affected how the spatial

and temporal dynamics of the population were viewed

through altering how the total variance was partitioned.

For example, including the entire time series or just

using a subset of the time series altered the estimated

structure of variation, and this change in estimated

variance structure resulted in different inferences being

FIGURE 4.—Power curves for the full analysis (years 1978–2006) for detecting temporal trends in gill-net CPE for walleyes in

Lake Erie with increasing numbers of fixed sites sampled per year (10, 25, 50, or 100) and increasing trend magnitude: (A) 3%
decline per year; (B) 5% decline per year; (C) 10% decline per year; and (D) 20% decline per year. The solid horizontal line

denotes power ¼ 0.80.
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made about trends in population abundance. The

nonsignificance of the trend variance component in

the full analysis implied that each sample site had a

similar trend over time, equal to an average annual

percent decrease of 3.4%. However, the significant

trend variation in the restricted analysis suggested that

walleyes sampled at different sites were deviating from

one another in their average trend, some increasing in

CPE and others decreasing. The differing patterns

between the full and restricted analyses pattern could

be reflecting changes in fish distribution or habitat over

time. We suspect that the magnitude of trend variation

will often be sensitive to the length of time series used

in the analysis. Over moderate time periods, abundance

at different sites may often show different trends, even

though over long time horizons each site follows the

regional trend. If so, more careful definition is needed

for what kind of trends are of interest for evaluating

power. If moderate-term (e.g., 10 year) trends are of

interest, then trend variation over this time frame

should be considered in the analysis. If power to detect

long-term trends is of primary interest, the shorter-term

trend variation might be better treated as correlation

within the ephemeral (site 3 year interaction) variation.

The differences in variance estimates also had

implications for the perceived ability to detect changes

in abundance over time. For example, on average, the

ability to detect a temporal trend after 10 years was

lower for the full analysis than for the restricted

analysis. This lower power was largely influenced by

the larger percentage and magnitude of the coherent

temporal variance component estimated for the full

analysis (r̂b ¼ 0.25 6 0.09) than that for the restricted

analysis (r̂b ¼ 0.09 6 0.06). The larger coherent

temporal variance also influenced the observed pattern

where, in the full analysis, the gain in power when the

number of sample sites was increased was smaller than

for the restricted analysis. This inability to gain power

by changing aspects of the sampling design (i.e.,

adding more sample sites) when large coherent

temporal variability is present reflects that the influence

of coherent temporal variation on power cannot be

reduced by changing specific design details of the

sampling protocol. This is in contrast to other sources

of variation examined in this study (see Urquhart et al.

FIGURE 5.—Power curves for the restricted analysis (years 1996–2006) for detecting temporal trends in gill-net CPE for

walleyes in Lake Erie with increasing numbers of fixed sites sampled per year (10, 25, 50, or 100) and increasing trend

magnitude: (A) 3% decline per year; (B) 5% decline per year; (C) 10% decline per year; and (D) 20% decline per year. The solid

horizontal denotes power¼ 0.80.
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1998 for additional details on specific variance

components). Previous studies have demonstrated the

large influence that coherent temporal variation has on

reducing the power to detect temporal trends (Urquhart

et al. 1998; Wagner et al. 2007). Those findings imply

that, all else being equal, if a large proportion of the

total variation in a fish populations is composed of

coherent temporal variation, then that population will

inherently be more difficult to detect temporal trends in

than will fish populations with smaller coherent

temporal patterns, regardless of what survey design is

employed. To illustrate this point for the CPE data, we

considered a scenario using the full data set where there

was a 5% annual decline in CPE and 50 sites were

sampled each year. We then reduced coherent temporal

variation by half as well as setting it equal to zero and

compared those results with those for the situation in

which the estimated value for coherent temporal

variance was used. Under this situation, the power to

detect a 5% trend in 10 years increased from 0.15 for a

situation using the estimated coherent temporal vari-

ance to over 0.8 when there was no coherent temporal

variation. Because of the large influence of coherent

temporal variability on trend detection capabilities,

annual covariates can also be included in the modeling

exercise in an attempt to explain this source of

variation and to increase power. For example, for the

restricted analysis we used as covariates annual average

Secchi disk depth and water temperature data (aver-

aged across sample sites within each year), which were

taken at the time nets were set, in an attempt to explain

coherent temporal variation. However, in our case

neither Secchi disk depth nor water temperature

explained coherent temporal variation (P ¼ 0.35 for

Secchi depth and P ¼ 0.87 for water temperature).

However, we recommend that monitoring programs

measure physiochemical and additional biological data

hypothesized to influence the coherent dynamics of the

fish population being monitored. Including these data

may not only allow for an improved estimate of power

but also lend insight into important biological process-

es that influence all sample sites similarly within a

given year.

It was not the purpose of this study to perform a

thorough evaluation of survey designs and how they

interact with components of variation to influence trend

detection power for walleyes in Lake Erie. Rather, we

wanted to illustrate the need to evaluate FI surveys and

the utility of quantifying various spatial and temporal

sources of variation to address management questions

related to FI survey design and expectations. However,

the evaluation of survey design is a logical next step

once the most precise variance components are

estimated based on the available data.

Recommendations and Future Directions

Our analysis focused on time series data for walleyes

collected by the ODNR collected during 1978–2006.

We realize that other freshwater systems may not have

the benefit of long-term data sets such as those

available for many species in the Great Lakes.

However, because of the widespread use of FI surveys

to monitor fish populations, analyses can be performed

that take advantage of multiple time series already

collected for different species within a given region.

For instance, our analysis was limited to CPE data for

Ohio waters, and including time series from other parts

of Lake Erie (and other Great Lakes) would provide

further insight into the structure of variation, which

ultimately drives the results and interpretations of the

power analyses. Such time series, even if they are of

differing lengths and quality and are taken from

multiple systems, can be analyzed in combination to

estimate variance components. For example, by

utilizing methods similar to those used in this study,

a meta-analysis type approach could be used across

systems, where multiple time series for a given species

are analyzed simultaneously. Because FI surveys

collected from different agencies contain data that

were collected at different frequencies and some may

contain missing data, some FI surveys may contain

more or less information about the spatial and temporal

dynamics of fish populations. A meta-analysis type of

an approach will allow surveys containing more

information to help inform those surveys or systems

that contain less information. This type of analysis will

result in more precise variance estimates, which can

then be used in a comprehensive evaluation of FI

surveys for commercially and ecologically important

fish species. The variance components so obtained can

then be used to establish expectations for the trend

detection capabilities of FI surveys and ultimately to

evaluate and improve FI survey designs. A meta-

analysis type of an approach will also benefit both

relatively data-rich systems, such as the Great Lakes,

and relatively data-poor systems, which may include

some inland lakes and streams. In addition, such an

analysis will help determine whether sampling designs

deemed ‘‘optimal’’ vary among systems, species, or life

stages (juvenile or adult).

Lastly, this approach lends itself to the development

and comparison of fishery indicators. Managers should

evaluate multiple indicators, when appropriate, to

ensure that they are monitoring an indicator that

represents specific management objectives, particularly

given the time and expense involved in monitoring. For

example, composite indicators that reflect trends in

CPE for multiple species can be developed and
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evaluated (Maxwell and Jennings 2005). Composite

indicators or indicators of the whole fish community

may exhibit lower variability than for individual fish

species, and thus may represent more sensitive

indicators for some management objectives (Smokor-

owski and Kelso 2002).

Before performing such analyses, however, specific

objectives of the monitoring program must be speci-

fied, along with the changes in CPE that are desired to

be detectable. Although we focused on detecting

temporal trends in this study, we recognize that FI

surveys are often used to fulfill multiple objectives.

Thus, explicitly stating the goals and objectives of a

monitoring program will help ensure that the survey

design utilized will maximize the ability to meet

multiple objectives. The evaluation of FI surveys and

potential improvements to existing survey design is

important not only to ensure that management actions

can be confidently evaluated over the short-term but

also to establish realistic expectations for what kind of

changes can be detected.
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